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Abstract
We investigate a discrete Markov process in which the immigration of
individuals into one population is controlled by the fluctuations in another. We
examine the effect of coupling back the second population to the first through
a similar mechanism and derive exact solutions for the generating functions
of the population statistics. We show that a stationary state exists over a
certain parameter range and obtain expressions for moments and correlation
functions in this regime. When more than two populations are coupled,
cyclically transient oscillations and periodic behaviour of correlation functions
are predicted. We demonstrate that if the initial distribution of either population
is stable, or more generally has a power-law tail that falls off like N−(1+α)

(0 < α < 1), then for certain parameter values there exists a stationary state
that is also power law but not stable. This stationary state cannot be accessed
from a single multiple immigrant population model, but arises solely from the
nonlinear interaction of the coupled system.

PACS numbers: 02.50.−r, 02.50.Ey, 89.75.−k

1. Introduction

Continuous variables characterized by Lévy-stable distributions have been invoked to
characterize data from a wide range of complex systems [1–3]. However, many real phenomena
are intrinsically discrete (e.g. [4]), with integer numbers of individuals or events characterizing
a process that evolves with time. This has recently led us to develop a time-dependent
population process whose equilibrium distribution is stable such that, by analogy with the
continuous variable case, the sum of independent populations has the same distribution as
that of each constituent population. By allowing individuals to leave the population, we
were also able to generate a series of events that displayed the power-law characteristics
normally associated with scale-free behaviour [5–7]. This emigration mechanism more
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generally provides a means for the external monitoring of an evolving population [6] and
has stimulated an investigation of the statistical accuracy expected in measurements [8].

The population model investigated in our previous papers is a simple process involving just
deaths and multiple immigrations. The rate of demise of individuals is a conventional death
process with rate µN governed by the instantaneous number N present in the population at a
given time. However, the immigration process consists of multiple events that occur according
to pre-determined coefficients {αr} independent of the incumbent population. We have shown
how these coefficients determine the evolution of the population and its equilibrium statistics
and how indeed they can be chosen to generate a population with specific properties of interest
such as an equilibrium distribution that is stable [5, 7]. More generally, it enables the time
evolution of a chosen type of discrete noise or series of events to be simulated numerically—
a useful tool in the evaluation of signal processing algorithms and system performance.
One important property of the model is disconnection of the equilibrium distribution of the
population from its time evolution. The latter is always characterized by exponential decay,
even when the equilibrium distribution is scale-free, because the population evolution is a
first-order Markov process with PN, the probability of finding N individuals in the population
at time t, being governed by the rate equation

dPN

dt
= µ(N + 1)PN+1 − µNPN − PN

∞∑
r=1

αr +
N∑

r=1

αrPN−r . (1)

The choice of {αr} in this equation determines the form of the equilibrium distribution that is
attained asymptotically at long times whatever the initial state of the population. For example,
we showed previously [5, 7] that when αr ∝ [�(r − ν)/�(−ν)r!] with 0 < ν < 1, a class
of stable discrete distributions is obtained. In general, the {αr} can themselves be normalized
to form a discrete probability distribution of the multiplicity of the immigrants. Our original
model can therefore be generalized by drawing these probabilities from a second population
that may itself be evolving with time. Thus immigration into population 1 is moderated by
the fluctuations in population 2. In this model, population 1 is still ‘driven’ by population 2
that evolves completely independently according to its own process.

Although this driven problem is of interest in its own right, it suggests a more symmetric
configuration in which population 1 also influences population 2 through a similar multiple
immigrant mechanism. It is this coupled population model that will be investigated in the
present paper.

In the next section, a mathematical formulation of the model will be given, with a general
solution derived for the generating function of the conditional population distribution in
section 3. In section 4, the evolution of the moments will be derived using an alternative
approach and correlation functions will be obtained. Section 5 will report an investigation of
the effect of interactions between more than two populations whilst section 6 considers the
case when one population is initially governed by a discrete stable distribution. A summary
and discussion of future directions is presented in section 7.

2. Two populations coupled by multiple immigration

The terms containing {αr} in equation (1) constitute a simple convolution and the problem is
more simply expressed in terms of the generating function

Q(1)(s, t) ≡
∞∑

N1=0

(1 − s)N1PN1 = 〈(1 − s)N1〉. (2)
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Figure 1. Diagram of two coupled multiple immigrant population models.

Thus, the convolution in (1) transforms into a product:

∂Q(1)

∂t
= −µ1s

∂Q(1)

∂s
+ Q(1)

( ∞∑
r=0

αr(1 − s)r −
∞∑

r=0

αr

)
. (3)

The superscript on Q and the subscript on µ have been introduced to identify population 1.
We now generalize this process by drawing the {αr} from a second population governed by
the generating function

ε1Q
(2)(s, t) =

∞∑
r=0

αr(1 − s)r . (4)

Here, ε1 is a parameter required to convert αr into a normalized discrete distribution, and plays
the role of a coupling constant. Equation (3) may now be written as

∂Q(1)

∂t
= −µ1s

∂Q(1)

∂s
+ ε1Q

(1)[Q(2) − 1]. (5)

The model that will be investigated in the present paper envisages that the second population
is coupled back to the first population by a similar process:

∂Q(2)

∂t
= −µ2s

∂Q(1)

∂s
+ ε2Q

(2)[Q(1) − 1]. (6)

It is important to emphasize that in this model members of the two populations are not
exchanged nor are they necessarily of the same type, but the number in one population merely
affects the likelihood of a particular number of immigrants arriving in the other, see figure 1.

Full solutions of equations (5) and (6) can be obtained in certain cases, the simplest
of which is where two populations have the same coupling constants ε and the same death
parameters µ. It is easy to show that the two populations then either grow without limit or
become extinct unless µ = ε. In order to retain some generality in the model, therefore, each
population will be stabilized by introducing a conventional, independent, single immigration
term ([6] and references therein). Equations (5) and (6) then become

∂Q(1)

∂t
= −µ1s

∂Q(1)

∂s
+ ε1Q

(1)[Q(2) − 1] − ν1sQ
(1) (7)

∂Q(2)

∂t
= −µ2s

∂Q(2)

∂s
+ ε2Q

(2)[Q(1) − 1] − ν2sQ
(2). (8)

When ε1 = ε2 = 0, these equations describe two independent death-immigration processes
characterized by Poisson equilibrium distributions. However, when coupling is present the
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solution is evidently more complicated. In what follows, we shall usually specialize to the
case µ1 = µ2 = µ, ε1 = ε2 = ε, ν1 = ν2 = ν although the more general case can be solved
for quantities such as the evolution of the mean and variance of the populations without too
much difficulty.

3. Solution for the conditional generating function

When µ1 = µ2 = µ, ε1 = ε2 = ε, ν1 = ν2 = ν, equations (7) and (8) may be solved through
removal of the nonlinear term by subtraction. This leads to

∂D

∂t
= −µs

∂D

∂s
− (ε + νs)D

(9)
D = Q(1) − Q(2).

This equation has the solution

D(s, t) = exp

[
−νs

µ
(1 − θ) − εt

]
D(sθ, 0)

θ(t) = exp(−µt).

(10)

For example if initially there are N1 individuals in population 1 and N2 in population 2 then

D(sθ, 0) = (1 − sθ)N1 − (1 − sθ)N2 . (11)

Equation (7) can be expressed as an inhomogeneous partial differential equation for Q(1) in
terms of this difference solution:

∂Q(1)

∂t
= −µs

∂Q(1)

∂s
+ ε(Q(1) − D − 1) − νsQ(1). (12)

The transformation

Q(1) = D

1 − exp(X)
(13)

reduces equation (12) to the standard form
∂X

∂t
+ µs

∂X

∂s
= εD. (14)

The particular integral of this equation can be obtained in terms of the initial value of X by
Laplace transformation with respect to the time variable. The result may be expressed in terms
of an incomplete gamma function [9]

X(s, t) = X(sθ, 0) − D(sθ, 0)
ε

µ

(
νs

µ

)ε/µ

exp

(
νs

µ
θ − εt

)
�

(
− ε

µ
,
νs

µ

)
. (15)

In order to satisfy the boundary condition at t = 0, it is necessary to add a complementary
solution of equation (14), namely, an appropriate function of sθ . This obtains the full solution
for the generating function:

Q(1)(s, t) = Q
(1)
0 D0f

Q
(1)
0 − Q

(2)
0 exp{D0(1 − f + R)}

R =
(

νs

µ

)ε/µ

exp

(
νs

µ
θ − εt

) [
�

(
1 − ε

µ
,
νs

µ

)
− �

(
1 − ε

µ
,
νs

µ
θ

)]
(16)

f = exp

[
−νs

µ
(1 − θ) − εt

]
.
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In these formulae, we have used the abbreviations

D0 = D(sθ, 0) = Q
(1)
0 − Q

(2)
0 = Q(1)(sθ, 0) − Q(2)(sθ, 0). (17)

It is simple to check that this solution satisfies the appropriate initial conditions. The
generating function for the second population is obtained by transposing Q

(1)
0 and Q

(2)
0 in

(16) and it is easy to demonstrate that the result obtained is identical to that using the identity
Q(2) = D − Q(1) = f D0 − Q(1). Note that result (16) reduces to that for a simple death-
immigration process when the coupling constant, ε, is set equal to 0.

In the absence of the single immigrant terms, ν = 0, the generating function reduces to

Q(1)(s, t) = Q
(1)
0 D0 exp(−εt)

Q
(1)
0 − Q

(2)
0 exp{D0[1 − exp(−εt)]}

. (18)

Assuming that there are N1 individuals present in population 1 initially and N2 in population 2
using initial condition (11) the predicted means, n1(t), n2(t) of the populations, are thereby
found to be

n1(t) = 1
2 (N1 + N2) exp[(ε − µ)t] + 1

2 (N2 − N1) exp[−(ε + µ)t]

n2(t) = 1
2 (N1 + N2) exp[(ε − µ)t] + 1

2 (N1 − N2) exp[−(ε + µ)t].
(19)

Thus, the populations become extinct if µ > ε and increase without limit if µ < ε. In the
special case ε = µ, the populations equalize at long times, preserving the total number of
individuals present initially, and the generating functions for both populations approach the
form

Q(1,2)
∞ (s) = 1

1 + 1
2 (N1 + N2)s

. (20)

This solution remembers the initial condition and is the generating function for a geometric
or thermal distribution,

p(N) = 〈N〉N
(1 + 〈N〉)N+1

(21)

with mean 〈N〉 = 1
2 (N1 + N2). It is worth emphasizing again, however, that the two

populations are not necessarily made up from the same kind of individuals.
A non-trivial stationary solution to the more general problem when ν �= 0 is obtained from

equation (16) provided that ε < µ. By exploiting the relationship �(a, x) = �(a) − γ (a, x),
we then find at long times

Q(1,2)
∞ (s) = 1

1 +
(

νs
µ

)ε/µ
exp

(
νs
µ

)
γ
(
1 − ε

µ
, νs

µ

) . (22)

In principle, the probability distribution of the populations and their factorial moments can be
found from the derivatives of this function at s = 1 and s = 0, respectively,

p(1,2)(N) = 1

N !

(
− ∂

∂s

)N

Q(1,2)
∞

∣∣∣∣
s=1

;

N [r] = 〈N(N − 1)(N − 2) · · · (N − r + 1)〉 =
(

− ∂

∂s

)r

Q(1,2)
∞

∣∣∣∣
s=0

n[r] = N [r]/〈N〉r .

(23)

It will be shown in the next section that in practice the time evolution of low moments can
be obtained in a more direct way from the basic rate equations (7) and (8). Figure 2 shows
the thermal probability distribution, given by equation (20), and the coupled population,
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Figure 2. Plot of the probability distributions for the thermal distribution, with mean 10, and
that for the coupled population also with mean 10. The constants that give these values are
µ = 1.1, ε = 1 and ν = 1.

equation (22). It can be seen that in this instance the probability distribution for the coupled
population approaches that of the thermal distribution as ε → µ.

The marginal case, ε = µ, when ν �= 0 is of some interest. The difference in gamma
functions in the solution (16) then becomes a difference of exponential integrals [8] so that
R takes the form

R = νs

µ
θ exp

(
νs

µ
θ − µt

)
−

∞∑
k=1

(
−νs

µ

)k

(1 − θk)/kk!. (24)

After some manipulation, it can be shown upon using initial condition (11), that

lim
t→∞ Q(1)(s, t) → 1

1 + s exp
(

νs
µ

) [
νt + 1

2 (N1 + N2)
] . (25)

This result reduces to (20) upon setting ν = 0. At sufficiently long times the mean value
predicted by (25), 〈N〉 = νt , increases linearly with time. However, the normalized factorial
moments are asymptotically independent of time, again taking the values n[r] = r! expected
for a thermal or geometric distribution.

4. Moments and correlation functions

More insight into the evolution of the fluctuation statistics and correlation properties of the
coupled population model can be gleaned by calculating the low moments of the population
distribution directly from the rate equations for the generating functions (7), (8) using
relation (23).

Denoting ni(t) as the mean and mi(t) as the second factorial moment of population i gives
for the case µ1 = µ2 = µ, ε1 = ε2 = ε, ν1 = ν2 = ν:

ṅ1 = −µn1 + εn2 + ν, ṅ2 = −µn2 + εn1 + ν (26)

ṁ1 = −2µm1 + εm2 + 2n1(εn2 + ν) ṁ2 = −2µm2 + εm1 + 2n2(εn1 + ν) (27)

where the over-dot denotes differentiation with respect to time.
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Figure 3. (a) A plot of the temporal behaviour of the normalized second moment with initial
conditions N1 = 1, N2 = 20 000, N = 20 and ε/µ = 1/2. (b) A plot of the temporal behaviour
of the normalized second moment with initial conditions N1 = 1, N2 = 10, N = 1000 and
ε/µ = 0.99.

The structure of these equations is noteworthy for two reasons. Firstly, equations (26),
which determine the evolution of the mean, do not explicitly reflect the existence of the
nonlinear coupling of the populations. This is in fact first manifest in the evolution of the
fluctuations (27) and emphasizes an important general point: that the dynamics of the mean
of a population does not necessarily provide a good guide to the full range of its behaviour.
The second noteworthy feature is that the evolution of the mth order factorial moment does
not depend on the (m + 1)th order fluctuations, so that these stochastic systems do not have the
usual BBGKY hierarchical structure [10–12] requiring an ad hoc model to facilitate closure.
The fluctuations of any order can be determined for these systems without approximation.

In the case when there are N1 individuals present initially in population 1 and N2 in
population 2, the solution of equation (26) is readily found to be

n1(t) = N(1 − e(ε−µ)t ) + e−µt [N1 cosh εt + N2 sinh εt]

n2(t) = N(1 − e(ε−µ)t ) + e−µt [N2 cosh εt + N1 sinh εt]
(28)

where

N = 〈N〉 = ν

µ − ε
. (29)

Result (28) reduces to (19) in the absence of stabilization, ν = 0. When ν �= 0, N is the
equilibrium mean of each population that is approached at long times provided that µ > ε.
However, as we have already seen, the mean of each population grows linearly with time as
ε → µ and increases exponentially for ε > µ.

When µ > ε, the second normalized factorial moment approaches

n[2] = 2µ

2µ − ε
(30)

independent of the parameter ν. This value lies between the normalized second factorial
moment of a Poisson distribution (expected for the simple death-immigration process when
ε = 0) and that of a thermal or geometric distribution which it approaches as µ → ε in
accordance with result (21).

Figure 3 illustrates the temporal behaviour of the second moment for a selection of
parameters and initial conditions. Of especial interest is the case when the initial sizes of
the populations differ significantly from each other and with the final equilibrated mean size,
given by equation (29). Note that the size of the second normalized factorial moment depends
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essentially only on the ratio ε/µ. Figure 3(a) shows the evolution of the second moment
for when N1 = 1, N2 = 20 000, N = 20, for which ε/µ = 1/2. The relative fluctuations
both commence at zero, but those of population 1, which has a smaller initial number present,
rises and then appears to saturate close to 1, whilst those of population 2 remain close to
0. Thus, the fluctuations would indicate that population 1’s fluctuations are characteristic
with the Poisson distribution, whereas 2 evolves in an essentially deterministic manner until
µt ∼ 0.1. Thereafter the fluctuations in both populations rise, peaking in excess 1.8, at which
time the fluctuations in both populations are broadly synchronous. Thereafter, the fluctuations
simultaneously decline to the equilibrium value of 4/3. Another situation of interest is when
ε → µ, for then the mean of the stationary state diverges according to equation (29), and
the relative fluctuations have value 2. Figure 3(b) shows the evolution of the second moment
for when N1 = 1, N2 = 10, N = 1000 and ε/µ = 0.99. Again the relative fluctuations
commence at zero, with the fluctuations in the population of smaller initial size rising first.
There is a vestige of the plateau region when the second moment nears 1, but the characteristics
of both populations is a monotonic rise to the equilibrium value, which is only attained at a
very slow rate, concomitant with the divergence of the scale time (µ − ε)−1 that features in
the evolution.

The auto- and cross-correlation functions for the two populations can be determined from
the above results for the evolution of the mean values, conditional on initial numbers present,
using the relation (i, j = 1, 2)

Gij (τ ) = 〈Ninj (τ |Ni,Nj , τ = 0)〉. (31)

The normalized correlation functions

gij (τ ) = Gij (τ )

N2
(32)

are easily determined as

g11(τ ) = g22(τ ) = 1 − exp(−µτ) sinh(ετ ) +
var N

N2
exp(−µτ) cosh(ετ )

(33)
g12(τ ) = g21(τ ) = 1 − exp(−µτ) sinh(ετ ) +

var N

N2
exp(−µτ) sinh(ετ )

where the relative variance of N is defined by (29) and (30). These expressions show that, like
the time evolution of the means, the correlation functions are characterized by two distinct
time scales, (µ + ε)−1 and (µ − ε)−1. Moreover, as ε → µ, the latter time scale diverges,
indicating a slowing down of one contribution to the fluctuations. When ε = µ, result (33)
reduces to

g11(τ ) = g22(τ ) = 1 + exp(−2µτ) g12(τ ) = g21(τ ) = 1. (34)

Figure 4 shows the correlation functions for two populations, note the slow convergence to
1 as ε tends towards µ. It is noteworthy that these formulae are again independent of the
normal immigration parameter, ν. They may be contrasted with the result expected for a
simple death-immigration process (ε = 0):

g(τ) = 1 +
(

1 +
µ

ν

)
exp(−µτ). (35)

The fluctuation time when ε = 0 is thus twice that characterizing the case ε = µ. The factor
µ/ν in result (35) is the reciprocal of the population mean for the reduced problem and is a
manifestation of the discrete nature of the process. An analogous term is present in (33) but
does not appear in (34) because N → ∞ when ε → µ (equation (29)) and the process is
asymptotically continuous in this case.
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Figure 4. Plot of the normalized correlation functions g11 and g12 for two coupled populations.
The constant values were the same as those used in figure 1.
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Figure 5. Diagram of three coupled multiple immigrant population models.

5. Cyclically coupled populations

The coupled population model discussed above can be generalized to the case when more than
two populations are coupled in a cyclic fashion. A triple population process is illustrated in
figure 5, for example. Rate equations for the generating functions governing the behaviour of
this process may be written

∂Q(i)

∂t
= −µis

∂Q(i)

∂s
+ εiQ

(i)[Q(i+1) − 1] − νisQ
(i). (36)

Here, i = 1, 2, 3 and Q(4) = Q(1). We shall specialize to the case where the death and
immigration parameters are the same for each population, as before. It is then simple to
demonstrate that the same stationary state is obtained as in the case of two populations
provided that µ > ε. However, the evolution of the statistics to this state is now oscillatory.
Thus, for the mean of each population we obtain

N(t) = ν

µ − ε
+

M∑
j=1

Aj exp(aj t) (37)
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Figure 6. Plot of the normalized correlation functions for g11 and g12 for three coupled populations.
The constant values were the same as those used in figure 1.

where M = 3 and the time constants in the exponent are given by

a1 = −(µ − ε) a2 = a∗
3 = −µ − ε(1 − i

√
3)/2. (38)

Since the real parts of these constants are negative, at long times a non-periodic stationary
state of the form (22) is obtained. However, transient oscillations are generally manifest in
the evolution to this state and these are reflected in the behaviour of the correlation functions:

n1(t) = N +
1

3
(N1 + N2 + N3 − 3N) exp[(ε − µ)t] +

1

3
[(2N1 − N2 − N3) cos(εt

√
3/2)

+ (N2 − N3) sin(εt
√

3/2)] exp[−(µ + ε/2)t]

gii(τ ) = 1 +
var N

3N2
{exp[(ε − µ)τ ] + 2 exp[−(µ + ε/2)τ ] cos(ε

√
3τ/2)}

gij (τ ) = 1 +
var N

3N2
{exp[(ε − µ)τ ] − 2 exp[−(µ + ε/2)τ ] cos(ε

√
3τ/2 + π/3)}.

(39)

The relative variance here is calculated from results (29) and (30) whilst results for the means of
populations 2 and 3 can be obtained by simply permuting the indices. Note that the oscillation
period is longer than the decay time of the same term and is therefore barely discernible in
plot in figure 6 when the coupling constant ε approaches the death rate, µ. In the special
situation where the populations are initially identical no transient oscillations of the mean
will be observed although the correlation functions will still exhibit periodicities. This is a
consequence of assuming that the immigration and death parameters of the three populations
are identical.

In the case of four coupled populations, the exponents in (37) are given by

a1 = −(µ − ε), a3 = −(µ + ε)
(40)

a2 = a∗
4 = −µ + iε

The correlation functions of the stationary solution again exhibit an oscillatory structure:

g12(t) = g23(t) = g34(t) = g41(t) = 1 +
var N

2N2
exp(−µt)[sinh(εt) − sin(εt)]

(41)
g13(t) = g24(t) = 1 +

var N

2N2
exp(−µt)[cosh(εt) − cos(εt)]
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Figure 7. Plot of the normalized correlation functions for g11 and g12 for three coupled populations.
The constant values were the same as those used in figure 1.

gii(t) = 1 +
var N

2N2
exp[−µt](cosh[εt] + cos[εt]). (42)

These results are invariant to reversal of the subscript ordering, i.e. g12 = g21, etc.
The ratio of decay time to period of the oscillating terms in these results is now a factor

(2 + ε/µ)/
√

3 greater than that of the case of three coupled populations. This effect can
be seen clearly in figure 7, the oscillations becoming more pronounced and the correlations
taking longer to decay to unity. This trend continues as the number of coupled populations
is increased and may be demonstrated by consideration of the general case of a ring of
M interacting populations. If the death and immigration parameters are identical for each
population there is a stationary solution of the form (22) as before, and the mean of each
population is governed by the transient solution (37) with

aj = −µ + ε cos(2π(j − 1)/M) + iε sin(2π(j − 1)/M); j = 1, 2, . . . , M. (43)

It is easy to check that this formula generates the values (40) when M = 4, for example. When
there are very many populations so that M � 1, the solution (37) contains terms that exhibit
many oscillations during the approach to a stationary state. To see this consider the time
constant a2:

a2 = −µ + ε cos(2π/M) + iε sin(2π/M). (44)

Let µ = ε + δ/M and scale the immigration parameters with the number of populations
ε → εM, ν → ν/M so that N → ν/δ is finite at long times. Substituting into (45) and
expanding the trigonometric functions for small argument obtains

a2 ≈ −δ + 2π2ε

M
+ 2π iε (45)

so that the solution (37) has at least one term of the form

A exp[−(δ + 2π2ε)t/M] cos(2πεt) (46)

that has a decay time that is much greater than the period of oscillation. This behaviour will
also be manifest in the correlation functions of the corresponding stationary state.

6. Evolution of populations that are initially stable

So far we have investigated the predictions of the coupled population model when each
population contained a fixed number of individuals at time t = 0 (initial condition (11)).
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Although the evolution of the populations is evidently different when the initial state is
different, the conclusions reached above regarding the existence and characteristics of
a stationary solution remain valid provided that the moments of the initial population
distributions are finite. However, the situation is different if the moments of either of the
population distributions are not defined at t = 0. We have recently investigated discrete
distributions of this kind that occur in the study of complex systems [5, 7]. For example,
the discrete stable distributions are an important class of statistical models that provide a
discrete analogue of the Lévy-stable distributions which characterize continuous variables.

The class of discrete stable distributions are governed by the generating function

Q(s) = exp(−asα); 0 < α < 1. (47)

Since Q(0) = 1, the related distribution is correctly normalized. However, the integer moments
and correlation functions defined through (23) and (31), respectively, are infinite because
the distribution has a power-law tail that decreases like N−(α+1). The sum of independent
populations governed by the distribution corresponding to (47) obeys the same distribution:
hence the term ‘stable’. The special case α = 1 corresponds to the Poisson distribution, which
is also a member of the discrete stable class.

Solution (16) of the two coupled population problem is valid for all initial states of the
populations and the evolution of the system when the initial state is stable can be investigated
by setting Q

(2)
0 = exp(−asα exp(−αµt)). Examination of the large time limit now reveals

that the stationary state (22) is obtained as before only within the restricted parameter range
αµ > ε. Exponential growth occurs if αµ < ε whilst if αµ = ε a stationary state of the
following form is obtained:

Q(1)(s) = 1

1 + exp(νs/µ)
[

1
2asα + (νs/µ)αγ (1 − α, νs/µ)

] . (48)

When the single immigrant term is omitted, ν = 0, a stationary state is obtained only when
αµ = ε and takes the simple form

Q(1)(s) = 1

1 + 1
2asα

(49)

The distributions corresponding to (48) and (49) are again characterized by power-law tails
that decrease like N−(α+1) and have infinite integer moments, but unlike the distribution
corresponding to (47) they are not stable. Figure 8 shows the probability distributions for
equations (47)–(49). The tail of the distribution for equation (48) approaches that of (49),
and they both share the same asymptote as the stable distribution. The coupled population
model indeed has the general property of converting any initial distribution of individuals that
falls off like N−(1+α) in the tail (with 0 < α < 1) into a population governed by (48) or (49)
at long times when αµ = ε. An important point to note is that the solution (48) is truly
stationary. This may be contrasted with the earlier result (25) that was obtained when ε = µ

assuming that the initial distribution of each population had finite moments. In that case the
generating function changed with time, although the normalized factorial moments were time
independent.

Although (49) does not correspond to a stable discrete distribution, it is a stationary
invariant of the convolution equation (1). In other words, if the static coefficients {αr} are
probabilities corresponding to (49) then the stationary solution of (1) is also of this form. It
should also be further observed that if the time-dependent terms in equations (5) and (6) are
discarded then a ‘stationary’ solution of the form (49) with α = ε/µ is predicted if it is assumed
that Q(1) = Q(2). However, full time-dependent solution of the problem confirms that even
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Figure 8. Plot of the probability distributions for: the two coupled populations with deterministic
and stable power-law initial conditions, equation (48), the aforementioned system with ν = 0,
equation (49), and the stable power law described by equation (47). The constant values used are
ν = 1, µ = 2, ε = 1 and α = 1/2.

with this special assumption the class of generating functions (49) can only be accessed when
ε = µ (equation (20)) or when the initial generating function is also of the form (49) with
αµ = ε as found above.

It is interesting that distributions corresponding to the generating function (49) would
characterize the total number of individuals in many independent stably distributed populations
the number of which fluctuates according to a thermal (geometric) distribution. Thus, the
distribution of a fixed number W of independent stable populations is governed by the
generating function (47) raised to the power W. However, if W is itself varying according
to a thermal distribution

P(W) = W
W

/(1 + W)W+1 (50)

then

〈exp(−aWsα)〉W = {1 + W [1 − exp(−asα]}−1. (51)

The high population number density limit is now obtained by scaling s with W , i.e.,
sα → sα/W , and then taking W → ∞ leading immediately to (49). A variant of this
type of mechanism is encountered in the case of continuous variables. Thus, if the number
of independent Gaussian variables that are vector-summed is itself distributed according to a
negative binomial distribution then the amplitude of the resultant is found to be K-distributed
[13] in the high density limit. This is a very useful class of non-Gaussian statistical distributions
that have found wide application in modelling electromagnetic scattering phenomena (see
[14] for a brief review). More recently, the sum of a negative binomial distributed number of
independent Lévy variables has been investigated in the context of scale-free and self-organized
critical systems [15, 16], and leads to a probability density with distinct regions of power-law
behaviour characterized by different indices. This suggests that the above class (49) of discrete
distributions could be enlarged by varying the number of populations according to a negative
binomial distribution of which the thermal or geometric distribution is only one member. The
more general class would not be a natural outcome of the freely coupled population model
considered here, but a time-dependent process could be generated by suitable choice of the
multiple immigration parameters in equation (1).
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7. Concluding remarks

In this paper, we have carried out a preliminary investigation of a discrete Markov process
in which the immigration of individuals into one population is controlled by the fluctuations
in another. In this model, there is no exchange of individuals, which can be of different
types. We have examined the effect of coupling back the second population to the first through
a similar mechanism and have derived exact solutions for the generating functions of the
population statistics in this case. We have shown that a stationary state exists over a certain
parameter range and have obtained expressions for moments and correlation functions in this
regime. An investigation of cyclic coupling of more than two populations in this way has
revealed transient oscillations and periodic behaviour of correlation functions. We have also
demonstrated that if the initial distribution of either population is stable, or more generally has
a power-law tail that falls off like N−(1+α)(0 < α < 1), then for certain parameter values there
exists a stationary state that is also power law but not stable. Furthermore, this stationary state
cannot be accessed from a single multiple immigrant population model, it arises solely from
the nonlinear interaction of the coupled system.

The model that we have investigated in this paper was stimulated by our previous work
on the role of discrete processes in complex systems such as the Internet and WWW, protein
interactions and social networks. We have not sought to address a specific application here,
but our preliminary results provide useful insights into the wide range of behaviour that
coupled discrete populations of non-identical individuals can exhibit and offer an excellent
prospect for applications in the future. This expectation is supported by the number of
relatively simple generalizations that can be envisaged. For example, the populations could
be characterized by different parameters as originally conceived in equations (7) and (8). The
effect of one population on the other could be subject to delay: a preliminary study shows that,
unlike the results presented in section 4 (equation (28)), this leads to transient oscillations of
the population means even in the case of only two coupled populations. Single and multiple
births can also be included in the model. In contrast to equation (26), this leads to nonlinear
equations for the evolution of the mean of the type encountered in Smoluchowski coagulation
[17, 18]. An important priority will be to include modulation of deaths in one population by
fluctuations in the other in order to model predator-prey processes in small populations.
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